

Introduction to the Path Coordination Guide for the 70/80 GHz Millimeter-Wave Band

February 27, 2004

WCA 60+ GHz: 70/80GHz Interference Calculation Subcommittee

Document Approval Process

- WCA 60+ GHz
 committee to approve
 the draft (with
 modifications as
 appropriate)
- WCA Engineering committee to approve draft
- PCG then to be posted on WCA website?

PCG Authors

Contact	Company
Dave Stephenson, Editor	Cisco Systems, Inc.
Eldad Perahia, PhD	Cisco Systems, Inc.
Joseph Marzin	Comsearch
Will Perkins	Comsearch
John Lovberg, PhD	LOEA Communications, Inc.
Mike Doolan	NTIA
Thomas Rosa	Terabeam Corporation
Thomas Wiltsey	Terabeam Corporation

Document Overview

Document Outline

- Section 1: introduction
- Section 2: system overview and typical scenarios where interference can occur
- Section 3: propagation models, building/tower issues, ATPC behavior
- Section 4: path coordination process
- Issue: synchronizing with expected changes to FCC's R&O

- What's postponed for future revisions
 - Coordination for the 92-95 GHz band
 - Coordination with systems employing analog modulation
 - RAS coordination pending NTIA publication (note this is section 5 of the PCG)

System Overview

Reference Planes

- A (antenna) port: facilitates different antennas with the same transceiver
- R (radio) port: facilitates deployments with transceiver separated from antenna with associated feedline losses
- N (network) port: this interface is not specified

Interference Scenarios

Interference due to nearly collinear main beams

Rain fading is correlated between desired and interfering paths

Hub-and-spoke interference is worse on short paths during rainfall

Interference Levels

 Interference protection equivalent in value to T/I is provided over the entire received signal level range

Path Availability and Interference Margin

- Path availability is proportional to the rain fade margin engineered on the link
 - Function of the link budget
 - TID (see below) typically has minor impact on availability
- The rain fade margin is recommended to be reduced by 4dB—in the PCG this is referred to as total interference degradation (TID)
 - ➤ 1dB for single-exposure interference degradation (interference degrades C/N by this amount)
 - ➤ 3dB for multiple exposure allowance (MEA)

Propagation

Propagation Overview

- Free Space Path Loss
- Atmospheric Absorption Losses
- Precipitation Losses
- Precipitation-Induced Depolarization
- Fog Loss
- Snow and Ice Loss
- RF Backscatter from Precipitation
- Over-the-Horizon and Building Obstruction Losses

$$L_{fs} = -20\log\left(\frac{\lambda}{4\pi D}\right)$$

$$L_{atm} \sim 0.4 \, \text{dB/km}$$

$$L_{rain} = 0.885R^{0.785}$$
 (73.5), 0.985 $R^{0.765}$ (83.5)

$$XPD = 15 + 26\log f - 20\log|L_{rain}| - 40\log(\cos\theta_{el})$$

$$L_{fog} = 4.4e^{-0.03T} \rho \le 2 \,\mathrm{dB/km}$$

$$L_{ice}(R) \approx 0.05 L_{rain}(R)$$

$$P_{bs}/P_{t} = 2.5 \times 10^{-7} R^{0.58}$$

Rainfall and Rain Cell Models

Rain Model:

ITU-R P.837-4

Rain Attenuation:

$$L_{73.5} = 0.885R^{0.785}$$

$$L_{73.5} = 0.885R^{0.785}$$

$$L_{83.5} = 0.985R^{0.765}$$

Rain Cell Model:

> ITU-R P.452-10

 $d_c = 3.3R^{-0.08}$ km (plus debris field)

Rain Backscatter and Rain-Scattered Interference

Monostatic Case

- > Self-Interference
- Co-sited Link Geometries

Bistatic Case

vs. separation, pointing angles, antenna gain

Rain Backscatter

Over-the-Horizon Loss

- NSMA (Longley-Rice) model
 - Model describes diffraction from single and multiple knife edges and rounded obstacles, troposcatter
 - ✓ Will require modification for application to E-band; mods specified future version of the PCG
 - ✓ For now, we take the conservative position that attenuation will be at least as great as that modeled by a single knife-edge and therefore adopt a single knife-edge model
 - Based on path profile from digitized terrain database
- Primary application for clearing interference within large coordination radius around RAS facilities
- As EIRP levels increase, OH loss model will become more important to clearing longer path interferences in the terrestrial fixed services

Antenna RPE Smearing

- GPS measurement error (e.g. ± 3m) leads to angular pointing error
 - Pointing error worst for short-distance links
 - > ±0.7° for 500m link
- Pointing error accommodated by smearing of the antenna RPE in interference calculations
 - Example exaggerated for clarity

Automatic Transmitter Power Control (ATPC) Behavior Recommendations

- ATPC Power Margin: 10 dB
- ATPC Control Range in dB: EIRP[dBW]-23
- ATPC Power Increase due to path fading (RSL reduction) only, not increased BER (e.g., due to interference)
- ATPC must be controlled through handshake with remote transmitter, to avoid instability
- Fading in excess of 10 dB (relative to clear air level) to be recorded for confirmation of fading event; diagnostic warning only, may be reset upon return to normal RSL
- If signal remains below static threshold for more than 5 minutes, transmit power must be reset to minimum and alarm triggered – transmitter power may be raised for < 1 second each 30 seconds in attempt to re-establish link

Path Coordination

Administrative & Geographic Data

Data Field	Units / Type	Example	
Site Name		High Peak	
Latitude	DD-MM-SS.ss N/S	MM-SS.ss N/S 35-43-22.53 N	
Longitude	DDD-MM-SS.ss E/W	081-36-29.32 W	
Ground Elevation	m - AMSL	658.37	
Antenna Location Detailed Description		"10 Main Street, shooting out a 12 th floor window, north side"	
Call Sign		WIA422	
Licensee		Virginia Energy	
Station Class		FXO	
Link Status		Proposed	
Link ID		VE00001	
Registration Date		01/22/04	
Registration Time	hh-mm-ss	13-04-12 UTC	

Antenna & Radio Parameters

Data Field	Units / Type	Example	
Antenna Manufacturer		Andrew	
Antenna Model		HP-7080A	
Antenna Gain	dBi	50.0	
Antenna Beamwidth	degrees	0.6	
Antenna Centerline	m - AMSL	52.43	
Radio Manufacturer		Cisco	
Radio Model		4800 GE	
Modulation		BPSK	
Stability	%	0.01	
Transmit Power (min / max)	dBm	5.0 / 25.0	
Emission Designator		1G25D7W	
Emission Bandwidth	GHz	1.25	
Number of Channels		2	
Channel Center Frequencies	GHz	73, 75, 83, 85	
Receiver Threshold	dBm	-70.0	
Fixed Loss	dB	3.0	

Interference Analysis Objective

- For each potential case of interference a thresholdto-interference ratio (T/I) shall be determined that would cause 1.0 dB of degradation to the static threshold of the protected receiver
- For the range of carrier power levels (C) between the clear-air (unfaded) value and the fully-faded static threshold value, in no case shall interference cause C/I to be less than T/I
- <u>Unless</u> it can be shown that the availability of the affected receiver would still be acceptable despite the interference

Figure 4-3: Interference Objective

Analysis Steps

- Obtain Federal Government Clearance
 - ➤ WCA 60+ GHz Committee would prefer process whereby path coordinator obtains "clearance" from the NTIA
 - FCC R&O states otherwise as of this date
- Perform Analysis vs. other non-Federal Links
 - Follow Step-by-step Process to Minimize Analysis Difficulty
 - Use Mitigation Options to Resolve any Remaining Cases
 - ✓ Blockage / OH Loss
 - ✓ Antenna Upgrades
 - ✓ Cross-polarization
 - ✓ Etc.

Federal Government Coordination

- Must Receive Federal Government Clearance to Operate
- Coordination with Federal Gov't Links
 - "Green Light" from NTIA Web Page
 - Pass IRAC Review for "Yellow Light"
- Coordination with Radio Astronomy Service
 - Also Expected to be Handled by NTIA/IRAC
 - Interference Objectives into RAS Observatories TBD by NSF
 - Affects 81-86 GHz Band
 - > 18 Locations in the US
 - Coordination Zone Radius of 25 or 150 km

- Step 1: Radius Search
 - Retrieve Database Links within a Radius for Analysis
 - Choose Radius to Include All Links with Possible Interference
 - Suggest 100 km Search Radius

- Step 2: Assume Uncorrelated Fading
 - ➤ Require Interference to Meet T/I Under Condition Link Carrier has Faded to Threshold
 - Following Example Shows Coordination Contour
 - Step 2 Will Eliminate Most Potential Cases Within Step 1 Search Radius

Link Analysis

Step 2: Example

Case Parameters	
Interfering Transmitter Power (dBm)	10
Interfering TX Antenna Mainbeam Gain (dBi)	50
Interfering TX EIRP (dBm)	60
Interfering TX Maximum ATPC Power Reduction (dB)	7
Interfering TX Antenna Discrimination Angle (deg)	0
Interfering TX Antenna Discrimination (dB)	0
Victim RX Bandwidth (MHz)	1000
Victim RX Noise Figure (dB)	8
Victim RX Thermal Noise Power (dBm)	-76
Interference Objective for 1 dB Threshold Degradation (dBm)	-82
Victim RX Antenna Mainbeam Gain (dBi)	50
Atmospheric Absorption Loss (dB/km)	0.4
Desired Path Length (km)	2
Desired Path Loss (dB)	136.7
Desired Transmitter Power (dBm)	10
Desired TX Antenna Mainbeam Gain (dBi)	50
Desired TX EIRP (dBm)	60
Carrier Level (dBm)	-26.68
Victim RX C/N @ 10^-6 BER (dB)	14
Victim RX T/I (dB)	20
Victim RX Threshold @ 10^6 BER (dBm)	-62
Victim RX Fade Margin (dB)	35.32

Victim RX	Victim RX			
Antenna	Antenna	Required	Coordination	
Discrimination	Discrimination	Path Loss	Distance	Interference
Angle (deg)	(dB)	(dB)	(km)	Criteria
-180.0	55	137.00	1.900	I <t-(t i)<="" td=""></t-(t>
-30.0	55	137.00	1.900	I <t-(t i)<="" td=""></t-(t>
-29.9	50	142.00	3.200	I <t-(t i)<="" td=""></t-(t>
-20.0	50	142.00	3.200	I <t-(t i)<="" td=""></t-(t>
-19.9	45	147.00	5.300	I <t-(t i)<="" td=""></t-(t>
-15.0	45	147.00	5.300	I <t-(t i)<="" td=""></t-(t>
-14.9	40	152.00	8.200	I <t-(t i)<="" td=""></t-(t>
-10.0	40	152.00	8.200	I <t-(t i)<="" td=""></t-(t>
-9.9	36	156.00	11.300	I <t-(t i)<="" td=""></t-(t>
-5.0	36	156.00	11.300	I <t-(t i)<="" td=""></t-(t>
-4.9	0	192.00	63.800	I <t-(t i)<="" td=""></t-(t>
0.0	0	192.00	63.800	I <t-(t i)<="" td=""></t-(t>
4.9	0	192.00	63.800	I <t-(t i)<="" td=""></t-(t>
5.0	36	156.00	11.300	I <t-(t i)<="" td=""></t-(t>
9.9	36	156.00	11.300	
10.0	40	152.00	8.200	I <t-(t i)<="" td=""></t-(t>
14.9	40	152.00	8.200	I <t-(t i)<="" td=""></t-(t>
15.0	45	147.00	5.300	I <t-(t i)<="" td=""></t-(t>
19.9	45	147.00	5.300	I <t-(t i)<="" td=""></t-(t>
20.0	50	142.00	3.200	I <t-(t i)<="" td=""></t-(t>
29.9	50	142.00	3.200	I <t-(t i)<="" td=""></t-(t>
30.0	55	137.00	1.900	I <t-(t i)<="" td=""></t-(t>
180.0	55	137.00	1.900	I <t-(t i)<="" td=""></t-(t>

- Step 3: Assume Correlated Rain Fading
 - Apply Rain Fading Correlation Rules-of-Thumb Based on Link Geometry
 - Simple C/I Checks will Demonstrate Non-Interference

Link Analysis

Step 3

- Rule 1: Interference Path Near Boresight of Interfering Antenna
 - ✓ Rain may cause ATPC power increase of interfering transmitter
 - √ The same rain cell that causes power increase of interfering transmitter also attenuates interference path
 - ✓ ATPC power increase offset by rain fading of interference path
 - ✓ Interference calculations may use low ATPC power of interfering transmitter
- Rain cell diameter of 2km is centered on appropriate endpoint to define sector where rain attenuation is considered to be correlated

- Step 3
 - > Rule 1
 - ✓ ATPC power increase at A does not increase interference at D

Step 3

- ➤ Rule 2: Interference Entering Victim Antenna Near Boresight Direction
 - ✓ Rain may cause Victim Link Carrier to Fade
 - √ The same rain cell that causes Carrier fading also attenuates interference path
 - √ C/I in clear air is worst case
 - √ Show that C/I > T/I in clear air to Resolve Case

- Step 3
 - ➤ Rule 2
 - ✓ Desired signal fading equal to interference signal fading

- Step 3
 - > Rule 2
 - ✓ Desired signal fades less than interfering signal

Step 3

- ➤ Rule 3: Desired and Interfering Propagation Paths within a Rain Cell
 - ✓ Same Fading Rate (dB/km) Affects Desired, Interfering, and Interference Paths
 - ✓ Can Calculate C/I at any rain rate
 - √ Show C/I > T/I for any rain rate between clear air and static
 threshold to resolve case
 - ✓ ATPC operation defines critical points to calculate C/I

- Step 3
 - > Rule 3

✓ Equal rate-of-fading (dB/km) of interference and desired signals

33

- Step 3
 - > Rule 3
 - √ Equal-rate (dB/km) fading example

- Step 4: Detailed Simulation of Rain Cells
 - We believe that almost all links will be cleared by the previous 3 steps
 - ✓ Early links will be limited in range to ~2km
 - √ Worst case rain cell diameter ~2km
 - Several Approaches Possible
 - Further Study Required
 - Rain cell model based on ITU-R P.452-10 (as stated earlier)

Long Links with Small Fade Margin

- 1 dB degradation from a single interferer could impact a link with very small fade margin
- No change to the interference criteria is recommended to accommodate these links
- Use such links only at your own risk

Limiting Availability of Short Links

- Very short links may have excessive fade margins
- Meeting T/I at threshold could over protect such links
- Recommend protecting only enough fade margin to meet 99.9999% availability

Coordination for Co-located Radios

- Recommend harmonized frequency plan
 - Matched high/low plan
- Need accurate antenna positions for colocated sites
- Additional information such as site surveys / sketches and/or measurements may be necessary